CRISPR Screens Uncover Genes that Regulate Target Cell Sensitivity to the Morphogen Sonic Hedgehog.

نویسندگان

  • Ganesh V Pusapati
  • Jennifer H Kong
  • Bhaven B Patel
  • Arunkumar Krishnan
  • Andreas Sagner
  • Maia Kinnebrew
  • James Briscoe
  • L Aravind
  • Rajat Rohatgi
چکیده

To uncover regulatory mechanisms in Hedgehog (Hh) signaling, we conducted genome-wide screens to identify positive and negative pathway components and validated top hits using multiple signaling and differentiation assays in two different cell types. Most positive regulators identified in our screens, including Rab34, Pdcl, and Tubd1, were involved in ciliary functions, confirming the central role for primary cilia in Hh signaling. Negative regulators identified included Megf8, Mgrn1, and an unannotated gene encoding a tetraspan protein we named Atthog. The function of these negative regulators converged on Smoothened (SMO), an oncoprotein that transduces the Hh signal across the membrane. In the absence of Atthog, SMO was stabilized at the cell surface and concentrated in the ciliary membrane, boosting cell sensitivity to the ligand Sonic Hedgehog (SHH) and consequently altering SHH-guided neural cell-fate decisions. Thus, we uncovered genes that modify the interpretation of morphogen signals by regulating protein-trafficking events in target cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G protein-coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog.

The morphogen Sonic Hedgehog (SHH) patterns tissues during development by directing cell fates in a concentration-dependent manner. The SHH signal is transmitted across the membrane of target cells by the heptahelical transmembrane protein Smoothened (SMO), which activates the GLI family of transcription factors through a mechanism that is undefined in vertebrates. Using CRISPR-edited null alle...

متن کامل

Performance of methylation and expression fluctuations of sonic hedgehog genes in gastric adenocarcinoma

Gastric cancer (GC) is considered as one of the most serious cancers, and in Iran, due to environmental factors in different regions, it has a high frequency. Apart from environmental factors, genetic and epigenetic ones also play a key role in the development of carcinogenesis of GC. In this regard, the study of functioning of the molecular mechanisms involved in the carcinogenesis and also tu...

متن کامل

Measuring error rates in genomic perturbation screens: gold standards for human functional genomics

Technological advancement has opened the door to systematic genetics in mammalian cells. Genome-scale loss-of-function screens can assay fitness defects induced by partial gene knockdown, using RNA interference, or complete gene knockout, using new CRISPR techniques. These screens can reveal the basic blueprint required for cellular proliferation. Moreover, comparing healthy to cancerous tissue...

متن کامل

Hedgehog signals regulate multiple aspects of gastrointestinal development.

The gastrointestinal tract develops from the embryonic gut, which is composed of an endodermally derived epithelium surrounded by cells of mesodermal origin. Cell signaling between these two tissue layers appears to play a critical role in coordinating patterning and organogenesis of the gut and its derivatives. We have assessed the function of Sonic hedgehog and Indian hedgehog genes, which en...

متن کامل

CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection

Several groups have used genome-wide libraries of lentiviruses encoding small guide RNAs (sgRNAs) for genetic screens. In most cases, sgRNA expression cassettes are integrated into cells by using lentiviruses, and target genes are statistically estimated by the readout of sgRNA sequences after targeted sequencing. We present a new virus-free method for human gene knockout screens using a genome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 44 1  شماره 

صفحات  -

تاریخ انتشار 2018